Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Coordination polymers formed by bridging 2-substituted tetrazole ligands: poly[[dichlorocopper(II)]-di-μ_{2}-2-propyl-2H-tetrazole- $\left.\kappa^{2} N^{1}: N^{4}\right]$ and poly[[dichlorocopper(II)]-di- $\mu_{2^{-}}$ 2-allyl-2H-tetrazole- $\kappa^{2} N^{1}: N^{4}$]

Alexander S. Lyakhov,* Michail M. Degtyarik, Ludmila S. Ivashkevich and Pavel N. Gaponik

Physico-Chemical Research Institute, Belarusian State University, Leningradskaya
Street 14, Minsk 220050, Belarus
Correspondence e-mail: lyakhov@bsu.by

Received 12 January 2005
Accepted 4 February 2005
Online 11 March 2005
Two polymeric complexes, $\left[\mathrm{CuCl}_{2} L_{2}\right]_{n}$, where L is 2-propyltetrazole $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4}\right)$ or 2-allyltetrazole $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4}\right)$, are the first coordination polymers of 2 -substituted tetrazoles in which only the tetrazole rings bridge neighbouring Cu atoms. In both complexes, the Cu atoms lie on inversion centres and are sixcoordinated in tetragonally distorted octahedral geometries, $\mathrm{CuCl}_{2} \mathrm{~N}_{4}$, with two N^{1} tetrazole ring atoms in the axial positions and two Cl atoms and two N^{4} tetrazole ring atoms in the equatorial sites. The Cl atoms do not participate in the polymeric layer formation.

Comment

We have recently reported the crystal structures of a number of copper(II) chloride complexes with 2 -substituted tetrazoles (Lyakhov et al., 2005, and references therein). Some of these complexes present chain coordination polymers with only Cl atoms as bridges between the neighbouring Cu atoms (Lyakhov et al., 2003a, 2005). In other compounds, either chain coordination polymers (Lyakhov et al., 2003) or layered polymers (Lyakhov et al., 2003b), polymeric structures are formed through both Cl bridges and tetrazole ring coordination. We report here two complexes of copper(II) chloride with 2 -substituted tetrazoles which are coordination polymers due only to the bridging coordination of the tetrazole rings. They are of the composition $\left[\mathrm{CuCl}_{2} L_{2}\right]$, where L is 2-propyltetrazole in (I) (Fig. 1) and 2-allyltetrazole in (II) (Fig. 2).
The tetrazole rings of the ligand molecules of complexes (I) and (II) are essentially planar, with mean deviations of the tetrazole ring atoms from their least-squares plane being 0.0007 (14) and 0.0010 (14) \AA for (I) and (II), respectively. The ring geometries (Tables 1 and 3) are similar to those found previously for complexes of 2 -substituted tetrazoles. For both
compounds, the shortest ring bond is the formal $\mathrm{N} 2-\mathrm{N} 3$ single bond of 1.308 (2) and 1.305 (2) \AA for (I) and (II), respectively. The remaining ring bonds lie in the range 1.324 (2)-1.337 (3) Å for (I) and 1.318 (3)-1.345 (3) Å for (II).

(I)

(II)

In both compounds, the Cu 1 atoms lie on inversion centres and have tetragonally distorted octahedral coordination (Tables 1 and 3). In both complexes, the equatorial positions of the octahedra are occupied by two N 4 and two Cl 1 atoms, with two N 1 atoms lying in the axial sites. The $\mathrm{Cu} 1-\mathrm{N} 4$ distances are similar in (I) and (II), as are the $\mathrm{Cu} 1-\mathrm{Cl} 1$ distances, while the $\mathrm{Cu} 1-\mathrm{N} 1$ bond length in (I) is 0.175 (2) \AA longer than that in (II).

Both compounds are layered coordination polymers in which only the ligand molecules act as bridges between neighbouring Cu atoms, through tetrazole ring atoms N 4 and

Figure 1
A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A view of the asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 3
The atomic arrangement of the polymeric layer in complex (I), viewed parallel to the $a b$ plane.

N 1 . The Cl atoms do not participate in the formation of polymeric layers. Figs. 3 and 4 show that the atomic arrangement of the polymeric layers is similar in both compounds. There are also differences within the layers of (I) and (II) with respect to the tetrazole ring orientations. The $\mathrm{Cl} 1-\mathrm{Cu} 1-$ $\mathrm{N} 4-\mathrm{C} 5$ torsion angle is $-151.34(19)^{\circ}$ for (I) and $178.28(19)^{\circ}$ for (II), so that in the latter the tetrazole ring lies almost in the equatorial plane of the Cu octahedron.

In 2 -substituted tetrazoles, the N^{1} ring atoms may be the preferred metal binding site compared with the N^{3} atoms, based on the observed $\mathrm{Cu}-\mathrm{N}^{1}$ bond lengths of 2.7739 (17) \AA in (I), 2.5987 (18) \AA in (II) and 2.851 (2) \AA in the related complex $\left[\mathrm{CuCl}_{2} L_{2}\right]$, where L is 2-ethyltetrazole (Lyakhov et al., 2003b), and the $\mathrm{Cu}-\mathrm{N}^{3}$ bond length of 2.926 (3) \AA in the complex $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{6} L_{4}\right]$, where L is 2-allyltetrazole (Lyakhov et al., 2003). Reliable conclusions about the electron-donating properties of the N^{1} and N^{3} tetrazole ring atoms requires further experimental study, as well as verification by quantumchemical calculations.

In the structures of (I) and (II), there are weak C5$\mathrm{H} 5 \cdots \mathrm{Cl}$ hydrogen bonds (Tables 2 and 4), implemented inside the polymeric layers. In complex (II), there are also interlayer hydrogen bonds between the methylene H atom of the allyl substituent and a Cl atom of a neighbouring layer (Table 4). Because the propyl and allyl substituents at the N 2 tetrazole ring atom of the ligand molecules are similar in size, it was

Figure 4
The atomic arrangement of the polymeric layer in complex (II), viewed parallel to the $b c$ plane.
expected that complexes (I) and (II) would be isostructural. However, the present data show a similarity only in the atomic arrangement inside the polymeric layers.

Experimental

2-Propyltetrazole and 2-allyltetrazole were prepared according to the method described by Gaponik et al. (1980). For the synthesis of (I), 2-propyltetrazole ($1.23 \mathrm{~g}, 0.011 \mathrm{~mol}$) was added to a solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.85 \mathrm{~g}, 0.005 \mathrm{~mol})$ in methanol $(10 \mathrm{ml})$. The mixture was stirred for 1 h at room temperature and then kept for about 20 d at room temperature in air. Green-blue crystals of (I) were obtained (yield $1.20 \mathrm{~g}, 67 \%$). Analysis for (I) found: $\mathrm{Cu} 17.9, \mathrm{Cl} 19.5 \%$; $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{CuN}_{8}$ requires: $\mathrm{Cu} 17.7, \mathrm{Cl} 19.8$. For the synthesis of (II), $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.85 \mathrm{~g}, 0.005 \mathrm{~mol})$ was added to a solution containing 2-allyltetrazole ($1.21 \mathrm{~g}, 0.011 \mathrm{~mol}$) in a methanol-diethyl ether mixture (50 ml , molar ratio 1:4). The resulting mixture was stirred for 1 h at room temperature. After removing about 35 ml of the solvent by heating the mixture at 353 K (water bath) for 30 min in air, it was cooled to room temperature and filtered. Green-blue crystals of (II) were obtained from the filtrate after 10 d (yield $0.91 \mathrm{~g}, 51 \%$). Analysis for (II) found: $\mathrm{Cu} 17.6, \mathrm{Cl} 19.5 \% ; \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{CuN}_{8}$ requires: $\mathrm{Cu} 17.9, \mathrm{Cl} 20.0 \%$.

Compound (I)

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]$
$M_{r}=358.73$
Orthorhombic, Pbca
$a=9.885$ (3) \AA
$b=8.867$ (2) \AA
$c=17.092$ (4) A
$V=1498.1$ (7) \AA^{3}
$Z=4$
$D_{x}=1.590 \mathrm{Mg} \mathrm{m}^{-3}$

[^0]
Data collection

Nicolet R3m four-circle
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.379, T_{\max }=0.483$
2477 measured reflections
2201 independent reflections
2024 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.124$
$S=1.13$
2201 reflections
89 parameters
H -atom parameters constrained
$R_{\text {int }}=0.027$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=30.1^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 12$
$l=-24 \rightarrow 2$
3 standard reflections every 100 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0762 P)^{2} \\
&+0.5691 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA) for (I).

$\mathrm{Cu} 1-\mathrm{N} 4$	$2.0196(15)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.328(2)$
$\mathrm{Cu} 1-\mathrm{C} 11$	$2.2652(6)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.308(2)$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.7739(17)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.464(2)$
$\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\mathrm{ii}}$	$6.6396(13)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.324(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.324(2)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.337(3)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.93	2.83	$3.183(2)$	104

Symmetry code: (iii) $-x+1,-y+1,-z+1$.

Compound (II)

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{2}\right]$
$M_{r}=354.70$
Monoclinic, $P 2_{1} / c$
$a=8.524$ (3) \AA
$b=8.855(3) \AA$
$c=9.593$ (2) \AA
$\beta=105.51(2)^{\circ}{ }^{\circ}$
$V=697.7$ (4) \AA^{3}
$Z=2$
$D_{x}=1.688 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nicolet $R 3 m$ four-circle diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.484, T_{\text {max }}=0.600$
2066 measured reflections
1949 independent reflections
1824 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0721 P)^{2}\right)
$$

$S=1.07$
1949 reflections
88 parameters

H -atom parameters constrained
Table 3
Selected geometric parameters (\AA) for (II).

$\mathrm{Cu} 1-\mathrm{N} 4$	$2.0615(16)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.326(2)$
$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2611(8)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.305(2)$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.5987(18)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.468(3)$
$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$6.5276(13)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.322(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.318(3)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.345(3)$

Symmetry code: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cl1}^{\text {ii }}$	0.93	2.63	$3.122(2)$	114
C6-H6B $\cdots \mathrm{Cl} 1^{\text {iii }}$	0.97	2.80	$3.548(2)$	135
Symmetry codes: (ii) $-x+2,-y+1,-z+1 ;$ (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$				

H atoms were included in geometrically calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

For both compounds, data collection: R3m Software (Nicolet, 1980); cell refinement: R3m Software; data reduction: R3m Software; structure solution: SIR97 (Altomare et al., 1999); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); publication software: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1097). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gaponik, P. N., Zvonok, A. M., Vereschagin, A. L. \& Chernavina, N. I. (1980). USSR Patent No. 742431.
Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. \& Ivashkevich, L. S. (2003a). Acta Cryst. E59, m38-m40.
Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. \& Ivashkevich, L. S. (2003b). Acta Cryst. C59, m204-m206.
Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. \& Ivashkevich, L. S. (2005). Acta Cryst. E61, m183-m186.
Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M., Matulis, Vadim E., Matulis, Vitaly E. \& Ivashkevich, L. S. (2003). Acta Cryst. C59, m90-m92.
Nicolet (1980). R3m Software. Nicolet XRD Corporation, Cupertino, California, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: Mo $K \alpha$ radiation
 Cell parameters from 24 reflections
 $\theta=16.6-22.0^{\circ}$
 $\mu=1.81 \mathrm{~mm}^{-1}$
 $T=292$ (2) K
 Prism, green-blue $0.58 \times 0.54 \times 0.40 \mathrm{~mm}$

